## Tangle diagrams

Let $T$ be a tangle diagrams

- $P_{T}:=$ vector space generated by endpoints of $T$
e.g
- $V_{T}:=$ vector space generated by exterior faces of $T$
- $U_{T}:=$ vector space generated by interior faces of $T$
- $M_{T}:=$ quadratic form on $U_{T} \oplus V_{T}$ by [doing a thing at each crossing]

Can embed $\delta: V_{T} \hookrightarrow P_{T}$ :


An endpoint-preserving map $\phi: P_{T_{1}} \rightarrow P_{T_{2}}$ is an isomorphism where

- endpoints go to endpoints of the same type (head or tail)
- If $\left(p, p^{\prime}\right)$ are adjacent endpoints, then $\left(\delta(p), \delta\left(p^{\prime}\right)\right)$ are adjacent endpoints in the same order.

Operations on tangles:

- Disjoint union: $T_{1}, T_{2} \mapsto T_{1} \sqcup T_{2}=T_{1} \sqcup_{p_{2}^{+}, p_{2}^{-}}^{p_{p}^{+}, p_{1}^{-}} T_{2}$
- Capping: $T \mapsto \widetilde{T}=\widetilde{T}^{p}, p^{\prime}$



## 3-tuples

Let $P$ be a vector space. Let $\mathcal{T}(P)$ be 3-tuples $\{(n, W, B)\}$ where:

- $n \in \mathbb{Z}$
- $W \subseteq P$ a subspace
- $B: W \rightarrow W^{*}$ a quadratic form

Operations on 3-tuples:

- Adding: $\left(n_{1}, W_{1}, B_{1}\right)+\left(n_{2}, W_{2}, B_{2}\right):=\left(n_{1}+n_{2}, W_{1} \oplus W_{2}, B_{1} \oplus B_{2} \in \mathcal{T}\left(P_{1} \oplus P_{2}\right)\right.$.
- Pullback by $\phi: P_{1} \rightarrow P_{2}: \phi^{*}\left(n_{2}, W_{2}, B_{2}\right)=\left(n_{2}, \phi^{-1}\left(W_{2}\right), \phi^{*} B_{2} \phi\right)$


## A map s from tangle diagrams to 3-tuples

Let $s$ be a map that sends $T$ to $s(T)=\left(n_{T}, W_{T}, B_{T}\right) \in \mathcal{T}\left(P_{T}\right)$ where:

- $n_{T}=\sigma\left(\left.M\right|_{U_{T}}\right)$
- $W_{T}=\left\{v \in V_{T}:\left.M(v)\right|_{U_{T}} \in \operatorname{im}\left(\left.M\right|_{U_{T}}\right)\right\}$
- $B_{T}: W_{T} \rightarrow W_{T}^{*}$ is given by $B_{T}\left(v_{1}\right)\left(v_{2}\right):=M\left(v_{1}-u_{1}\right)\left(v_{2}-u_{2}\right)$ where $u_{1}, u_{2} \in U_{T}$ are such that $\left.M\left(u_{1}\right)\right|_{U_{T}}=\left.M\left(v_{1}\right)\right|_{U_{T}}$ and $\left.M\left(u_{2}\right)\right|_{U_{T}}=\left.M\left(v_{2}\right)\right|_{U_{T}}$
Note that:
- $B_{T}$ does not depend on the choices of $u_{1}, u_{2}$.
- Can decompose $U^{*} \cong \operatorname{im}\left(\left.M\right|_{U}\right) \oplus \operatorname{ker}\left(\left.M\right|_{U}\right)^{*}$ so can also describe $W_{T}$ as:
- $\left\{v \in V_{T}:\left.M(v)\right|_{\operatorname{ker}\left(\left.M\right|_{U}\right)}=0\right\}$ or
- the image of the projection of $\left\{w \in U_{T} \oplus V_{T}:\left.M(w)\right|_{U}=0\right\}$ to $V_{T}$.

How operations on tangles change $s$ :

- For disjoint union: $s\left(T_{1} \sqcup T_{2}\right)=\operatorname{id}^{*}\left(s\left(T_{1}\right) \oplus s\left(T_{2}\right)\right)$
- For capping:
- If there is $v \in W_{T}$ that becomes an interior face in $\widetilde{T}$, then $s(\widetilde{T})=\mathrm{id}^{-1}\left(n_{T}+B_{T}(v)(v), \operatorname{Ann}_{B_{T}}(v),\left.B_{T}\right|_{\operatorname{Ann}_{B_{T}}(v)}\right)$
- If there is no such $v$, then $s(\widetilde{T})=\mathrm{id}^{*}(s(T))$


## A tangle invariant

Call $s\left(T_{1}\right)$ and $s\left(T_{2}\right)$ equivalent if $s\left(T_{1}\right)=\phi^{*}\left(s\left(T_{2}\right)\right)$ for some end-point preserving $\phi$. Denote equivalence by $s\left(T_{1}\right) \sim_{\phi} s\left(T_{2}\right)$. We'll also say that $T_{1}$ and $T_{2}$ are s-equivalent if $s\left(T_{1}\right)$ and $s\left(T_{2}\right)$ are equivalent.
Theorem 0.1. s plays well with tangle operations. If $s\left(T_{1}\right) \sim_{\phi} s\left(T_{2}\right)$, then:


Proof. By the previous theorem, just need to show that the two sides of each Reidemeister move are $s$-equivalent. Can do this by using the identity map on the endpoints.

